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This paper is concerned with the study of control systems in which the 
transition process is described by means of stochastic linear differ- 
ential equations. The construction of the Liapunov functions is accom- 
plished by means which generate the known methods of Chetaev Ill. The 
system is subjected to the action of a random effect of the Markov type 
[ 2 I, developed during the control process, and also to disturbances 
which have the character of random external impulsive disturbances [ 3 1. 
The problem of the stabilization of such systems generalizes Llapunov’s 
[4 I stability problem. The problem considers the establishment of the 
control action of a control element (control program) which assures sta- 
tistical stability of a given motion with arbitrary initial deviations. 
Such a control program will be called ~allowable”. Sufficient conditions 
for the existence of an allowable control program in an nth order linear 
system are established. For a system of second order, the possibility of 
constructing allowable control Is established by means of a geometric in- 
terpretation in the phase plane. The existence criteria given in this 
paper help explain the problem of the establishment of the optimum con- 
trol action which minimizes some integral criterion on the quality of the 
transition process, 

1. Statement of problem. 1. Let us study a stationary control 
system where the transition process is described by the vector equation 

dx / dt = A (rl) x + c (7) E + r (4 (1.1) 

6 = g (Xl, . . ., xn, rl) (1.2) 

Here X= {lltl, . . . . x,,i denotes an n-dimensional vector of the coordi- 
nates ni which are equal to zero in a given unperturbed motion; 5 is a 
scalar governing the control action; A(I)) is a matrix of the form 11 

aijIln19 

whose coefficients are functions of the random factor v(t); c=( cl, . . . c,,] 
denotes an n-dimensional vector which depends on the random quantity 
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q(t), and y = ty,, . . . . y,) is an n-dimensional disturbance vector, 

We assume that the sought relation t(x, ‘7) is linear: 

5 (z, Tl) = p1 (7) Xl -1. . . . + pn (q) &I (1.3) 

The problem calls for the establishment of a stabilizing control pro- 
gram 4‘ by means of choosing the functions ~~(~~, . . . , /3,(n). ‘Ihe coeffi- 
cients of the matrix a ii(?) and the components of the vector ci(71) are 
known. A description of the statistical properties of the random quantity 
q(t) and the external perturbation y(x) is given below. 

2. We shall describe the random quantity q(t) in the following manner 
[2, p.234 1. Assume that q(t) is a unique Markov process. ‘Ihe change of 
q(t) takes place in a closed finite interval r/l < q(t) < n2. 

We denote by PE Q/L1 the probability of an event Q occurring under 
the condition L. For a sufficiently small interval of time At we have 

P lrl (t + At) = 01 / q (t) = ix1 = 1 - q (a) At + o (At) 

I-’ [q (t + At) # 5, rl (t + At) Q P / ri (t) = al = q (a, B) At + o (Al) 

where q(a) and q(a, /3) are assumed to be known. 

If it is assumed that the function q(a, f9 has a density ~(a, p), 
then 

I-’ 1111 < rl (t + At) < 327 11 (t + At) # a / q (t)= al 

_I= A.t 5’~ (a, p) dj3 + o (At) 
i’s 

Under these conditions of realization @(t) of the process the q(t) 
are step functions [ 2, p. 233 I . 

3. The perturbation y = ( yl, . . . , y,i is a random function which de- 

scribes a constantly acting disturbance. We assume that y can be repre- 
sented in the form 

Here fit) is an impulsive function which depends on the random vari- 
ables “k and tk, where the values of vk are independent for various k 
and are also independent of tk; the symbol s(t) denotes the Dirac delta 

function; p = Ip1, . . . . paj’is a constant vector or a vector function 

p(x). 
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For the random variable tk the Poisson distribution with a frequency 
X [3, p.63 1 is satisfied. 

With such a description of the disturbance, the realization of the 
solution d’(t) is subject to a discontinuous change (A,lei) at the instant 
tk. If the function Xi P(t) is assumed to be continuous from the right, 
one can compute 

Suppose the mean value of vi is e 
I” 

al to zero (MIvit = 0, k = 1, 
. ..) I); the scattering I!!( Vi2 I = oi > 0 is known as well as the correla- 
tion coefficients kij, which describe the statistical coupling of yi and 
Yj(Mi ViVj 1 = kiJapj). W e shall analyze the following cases: 

4) The disturbing action diminishes to zero as the given law of motion 
approaches x = 0, where 

pi = pi1x1 + . . . + j&n% (i = I, .,. ) n, lLij = ‘Oast) (14 

b> ?he disturbance does not depend on x(t) 

pi = COIlSt (1.7) 

4. ‘Ihe solution of the system (1.1) will be a random vector function 
ix(t), q(t), y(t) 1 ‘whose realizations (xP(t), VP(t), yP(t) f satisfy 
Equation (1.1) for 9 = VP(t), y = yP(t). 

As a result of the disturbance action the realization of the solution 
xP(t) is discontinuous, which introduces some peculiarities into further 
considerations. 

nus ) each initial condition x0, v,, g enerates a random Markov function 

l+(t), q(t)lxg, 70, to = 01. 

5. We shall introduce some definitions which modify the concepts pre- 
sented in [ 5,6 1 . 

Definition i.Z. The solution n = 0 of system (1.1) will be said to be 
stable in the probability sense if for any arbitrarily small numbers 
c > 0 and p > 0 one can determine a 6 > 0 such that the following inequal- 
ity holds: 

P [z Xi2 (t) < E2 for t > to/ 2 Zio2 < 6’ for t = to] > 1 - p 
n 11 

Here, on the left-hand side stands the probability of the inequality 
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2 x?(t) < I* for the initial conditions ~xi,12 :C 6? 

If, in a”ddition, for any w > 0 the following condition is satisfied 
for each initial value x0 

then the solution will be called asymptotically stable in the probability 
sense (as a whole). 

Definition 1.2. ?he solution x(t) of the system (1.1) will be said to 

be stable in the mean if for an arbitrary number E > 0 one can determine 

a 6 > 0 such that the following inequality holds: 

‘II (21s (t) + . . . + cc,* (t); z (t): 

Here, on the left-hand side M{z~,~(t) + . . . + zn2(t)! is the mathe- 

matical expectation with the initial conditions x0, qo, x210 + . . . + 

xznO 6 a2. 

If, in addition, for each initial value of x0 the condition 

lim M {xl2 (t) + . . . -i-- z, *(t)> = 0 as 1 --, Lx 

is satisfied, the solution can be said to be asymptotically stable in 

the mean (as a whole). 

Using Definitions 1.1 and 1.2, we can formulate requirements leading 

to the allowable control program. We shall call the control program 

((x, r,~) allowable if the following conditions are fulfilled: 

a) Solution x = 0 is on the average asymptotically stable with respect 

to arbitrary initial deviations. 

b) ‘Ihe integral of the mean square error [ 6, p. 428 1 
m 

\ i,h 
M 7 Xi2 + 5’ dt 

I, 71 

is finite for arbitrary initial conditions x0, ‘lo. 

c) The system possesses stability of the given motion x = 0 in the 

probability sense. 

Note 1. I. In the case (3) of Section 3 where, on account of the pre- 

sence of a disturbance, the unperturbed motion x = 0 is impossible to be 

realized without some unavoidable error, whose value is determined in 
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the space l ccl, . . . . x,] ‘by means of the inequality xl2 + *. . + zn2 < A2, 
we shall introduce the concept of (p, A) - allowable control. This is a 
control program which satisfies the conditions 

lim [M ( xl2 (t) -k . + ~.,~~(t)}] < A2 as t--f DC, z = xin; i-l ,..., n 

Here, the symbol MA denotes the mathematical expectation in terms of 
the random variables ri(t), t(t) which satisfy the inequality 

Z q” (t) + E’ (t) > AZ 

(y) For a given number p > 0 one can find a p > 0 such that 

P [ xl2 (t) $ . . . + rn2 (t) <A” for t > tho2 _t . . . + rzmo < pz] > 1 - 11 

It can be seen from the conditions (a) to (y) that the stability in 
the probability sense and the stability in the mean have somewhat differ- 
ent meanings than in the Definitions 1.1 and 1.2. 

2. &preach to solution. 1. Suppose that in bation (1.1)) the 
perturbation is y(x) = 0. ‘Ihen the realization xP(t) of the solution of 
the system (1.1) will be a piecewise-smooth continuous function, and on 
the basis of lheorem 6.1 [ 5, p.818 1 the existence criterion of the 
allowable control is determined. 

If a positive-definite quadratic form v(n, q) can be found whose de- 
rivative dM( vi/&, formed on the basis of Equation (1.1) with 

5= /qq)x, + . . . + BJ17 )x,9 I P(1) I < b = const satisfies the condition 

dM {v) i dt = 

where 10(x, 7) is a negative-definite 
c(x, 7) gives the allowable control. 

--u, (? q) (2.1) 

quadratic form, then the function 

Condition (2.1), according to the 
the asymptotic stability in the mean 

above-mentioned theorem, assures 
and the stability in the probability 

sense of the solution x = 0. The convergence of the integral of the mean 
square error follows from the equation 

v(zo, ,n>= YM (2~. (J, q) / 20, 110) dt 
0 

which is obtained by means of integrating the averaged equation (2.1) 
with res ect to t, and from the ability to choose the constant L for 
which x1 f: + . . . + xn2 + [ ’ ,< Lzu(r, q) holds (for detail see an analogous 
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discussion in [ 6 I ) . 

Note 2.1. References [ 5,6 1 used a description of the random variable 

7 (t) in terms of a transition matrix 11 p.. I\ I”. The more general method 

of describing q(t) in the present paper ‘d oes not introduce any significant 
changes into the reasoning. 

Analogously to [ 6, p. 426 I, the derivative dM{ v 1 /dt is computed in 

the following manner: 

Here the Stieltjes integral replaces the summation in Equation (4.6) 

[ 6, p. 427 I. 

2. Let us assume that in the absence of disturbances, there exists an 

allowable control. Considering the perturbation y(x) the following addi- 

tional terms appear in the expression dhii v f /dt: 

(2.3) 

The negative-definite form [dM{ v ] /dt 1 1 is computed by means of 

Formula (2.2). Let us explain how the second term of the right-hand side 

of (2.3) is obtained. 

Assume that during a sufficiently small time interval At > 0 the co- 

ordinate xi is subjected to only one jump, whose magnitude, computed 

from Formula (1.51, is A si = p i~i. In the time interval t 6 T < t + At 

we shall neglect the continuous variations of the function V(X, 7) with 

x and shall assume that v(t) = a = const. These assumptions give an 

error which is small to a higher order and vanishes as At + 0. ?hen the 

mathematical expectation of the change of v with ( A,zij has the form 

The symbol M, denotes the mathematical expectation of AUv, which was 

obtained by averaging over the random variables vi; P[ul denotes the 

probability of one impulse occurring in the interval At. We have 

P Iul = hAt + o (At) 

For the computation of M,(A.vj we use the Taylor expansion of the 

quadratic form A,v; here all terms higher than second order are equal 

to zero. Thus 
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In this equation 

since the mean value of vi is equal to zero. Thus, taking into account 
the equation $ { v iv j [ = K,u %u j, we obtain from (2.4) after division by 
At and passing to the limit as At + 0 the desired expression for the 
terma of the right-hand side of (2.3), which are determined by the dis- 
turbance . 

Note that the second term of the right-hand side of (2.3) is positive, 
since 11(x, q) is a positive-definite quadratic form. 

It is impossible to use directly the results of CS 3 in the case of 
the disturbance, since the realizations d’(t) are discontinuous. 

Furthermore, in the case 1 (/3) there exists a neighborhood of the 
origin x1’ f . ..+n. ‘A2 where the derivative dMI@ if& is known to , 
be positive. 

In order to extend the conclusions made in Section 2 (1) to the case 
of the action of a disturbance, we shall formulate the following theorem: 

Theorem 2.1. Suppose that in Equations (1.1) the disturbance y does 
not depend on x (the vector p is constant) and that there exists a 
positive-definite quadratic form v(n, q), whose derivative of the mathe- 
matical expectance computed by means of Formula (2.2) for 5 = &x, 11) is 
negative-definite. lben for arbitrary p > 0 and A > 0 one can find 
numbers K and H such that when satisfying the inequalities 

hcQ <x I Auxt I < H (2.5) 

the control program [(z, q) is (p, A) -allowable. 

The proof of Theorem 2.1) proceeds in a manner analogous to the state- 
ment in [ 5 I (p. 823). ‘Ihe difference in reasoning and the presence of 
the limitation 1 Auxi 1 < H is caused by the discontinuity of the realiza- 
tion 9(t). ‘lhe detai,ls introduced into the reasoning by this difference 
are omitted here. 

If the vector p depends linearly on x (case 1 (a)), then because of 
the action of the disturbance, there appears on the right-hand side of 
Formula (2.3) a positive quadratic form, whose coefficients are deter- 
mined by the values of the dispersion oi and the coefficients p . 

al’ 
in 
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(1.6). The existence criterion of the allowable control, similar to 
‘lheorem 2.1, is formulated as follows. 

Assume that in Equation (1.1) the disturbance y varies linearly (1.6) 
with x, and that there exists a positive-definite form v(x, 1) whose 
derivative of mathematical expectance, computed by means of Formula (2.2) 
with 5 = 4(x, I), is negative-definite. Then one can always find p > 0 
and s > 0 such that when the inequalities 

are satisfied, the 

3. Stability 
transition process 
vector form 

It will be said 

aai2 < P, i pzj 1 < S (2.6) 

control &x, 7) is allowable. 

in the overall probability sense. Suppose a 
is described by means of a stochastic equation in 

du: / dt = A (q) X -/- C (q) F (3.1) 

that stability in the overall probability sense will 
exist if the solutions x(t) = 0 of Equation (3.1) correspond to the re- 
auirements of Bfinition 1.1, and in addition such an r, > 0 can be found . 
for two arbitrary numbers p > 0 and rd > 0 that the foliowing 
holds: 

This section presents conditions with the aid of which one can con- 

inequality 

--P 

struct a control program 6(x, q) which assures such a stability. 

If the system of vectors c(q), A(q)&), . . . . A”‘(q)&> is linearly 
independent, then for an arbitrary fixed value of q = v1 in the form of 
a Liapunov fnnction an optimum control time To{ x1, . . . . ZJ can be 
adopted, which can be determined from the conditions [ 7 1 

Here, f ik(r) are the coefficients of the inverse matrix of the fnnda- 
mental system of solutions of the equation 

dsidt = Ax (3.2) 

Ihe optimum control program u(x) from the point of view of fast action 
can be found by the method described in 17 1 . 
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Under the given conditions function To(x) = V(X) exists, and along 

the optimum trajectory dv(x)/dt = - 1 [7, p.634 1. We shall find a con- 
trol program [ = u(x, 7) which optimizes the system with a chosen value 

of 71 and the functions u(x, 7) for each fixed 7. 

Assuming v(x, q), constructed in such a manner, to be a function of 

the random variable q(t), we compute the derivative of mathematical ex- 

pectance dM( u) /dt on the basis of Equation (3.1). 

Taking into account (2.2) we obtain 

'lhe integral in (3.3) can be positive as well as negative. Thus, one 

should find such a neighborhood xl2 + . . . + xn2 < E 2 around the origin 

where the right-hand side of (3.3) will be certainly negative because of 

the smallness of To. Of course, 6 > 0 is determined by the maximum of 

the integral on the right-hand side of (3.3). 

In this neighborhood we choose a control program 5 = u(n, 71, assum- 

ing it to be a function of the random quantity q(t). It will be shown 

that the constructed control program can be extended over the entire 

space in order to assure the stability of the solution x(t) in the over- 

all probability sense. 

Let p > 0 be a given small number. Since in the region xr2+ . . . + xn2 
v(x, 7) satisfies the conditions of the theorem on the stability of the 

solution x = 0 in the probability sense [5, p.812 1, one can find a 
6 > 0 such that for the condition x1a2 + . . . + n,a2 < a2 the following 

inequality is fulfilled: 

p Iz12 (t) + . * * + xf12 (t) < i?l > 1 - p (3.4) 

Let us transform by means 

. ..) x,] the sphere xl2 + . . 

xn2 = 6’. Then the region a2 

region 

E2 \< Xl2 + . 

of a uniform expansion of the space (x1, 
+ xn2 = p2 into the sphere xl2 + . . . + 

Cx I2 + . . . + xn2 < 6 2 transforms into the 

. . + xx2 < a2 (E1=&2/6) 

It is required that the function u(x, 7) constructed above 
at the point {xl of the region a2 < xl2 + . . + x, 2<,2 into 
tion ur in a linear fashion 

transform 

the func- 
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In the region E * < x1* + . . . + x,,* < 6 12 we construct a function V, 

such that V,(x) = (c/S)* x 11(x8/c). ‘Ihen grad VI = (t/6) grad V, and 
consequently, taking into consideration the linearity of the system 
(3.1), we have (for 5 = u1 in the region E * < Xl2 + . . . + Xn2 < c 12 ) 

(since dv/dt = - 1). By continuing a similar construction process, one 
can find a series of consecutive concentric spheres with radii tj of 

functions Vj and Uj determined in the layer ~j_: < x1* + . . . + xn2 < E j*. 

It follows from (3.4) and (3.5) that for an arbitrary sphere (j the 

fulfilment of the inequality P [x,*(t) + . . . + z,*(t) < ~j*I > 1 - p is 
assured if only the initial deviations are bounded by the region x1* + 
. . . + xn *<, j-i* 

It will be shown that the constructed control program assures stabili- 
ty in the overall probability sense for the system (3.1). 

Let 6 > 0 and q > 0 be given numbers. Assume that the region rl* +- 
. . . + xn2 < c2 lies inside the kth sphere with a radius r = ck. Of 
course, the probability of the realization x?‘(t) going beyond the sphere 
of radius 6&I with the initial conditions xlO* + . . . + xnO* < <* will 
not be greater than p. One can choose an integer 1 > 0 such that p’ 6 q. 
‘Ihen for the sphere of radius 6k+1 the following inequality holds: 

which also proves the stated hypothesis on the stability in the overall 
probability sense. 

Thus, if the system of vectors c(q), A(q)c(q), . . . . A*‘(q)c(q) is 
linearly independent, then it is possible to construct a control program 
which assures the stability of the system (3.1) in the overall probabili- 
ty sense 

4. System of nth order. Sufficient conditions for the 
formation of allowable control. 1. Let us continue the study of 

Equation (3.1). Suppose that the function q(a, /3>, which characterizes 
the probability of the transition (7 = Q) -, (7 = /3), has the density 
p(a, /3). The variation of q(t) is limited by the closed interval 
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Theorem 4.1. If for any value of q(t) on the segment q1 < q(t) 5 q 
the following conditions are fulfilled: 

1) the vector system c(v), A(v)c(q), . . . , A*‘(T))c(T]) is linearly in- 
dependent; 

2) there exist finite estimates of the coefficients of the matrix 
A(q), the components of the vector c(q) and the density p(a, /3> 

(&‘I) 

then one can find a constant Q > 0 such that when the inequality NL < Q 
is satisfied, it is possible to construct an allowable control which 
stabilizes the system (3.1). 

Proof. From the first condition of the theorem it follows that for 
each fixed value of 71 = ~4 one can construct a control program p(x, 74) 
which assures the asymptotic stability and minimizes the mean-square 
integration error 18 1 : 

We have [ 9 1 

(4.2) 

l3y known methods and by inserting the control program LJO(Z, JIM) into 

(4.2) we obtain an equation for V(x, v+,): 

In order to clarify the dependence of the constructed function V upon 
q we differentiate (4.3) (for the present formally) with respect to 7, 
denote a V(x, ~)/a7 = a and transpose all terms containing a and d a /a? 
to the left-hand side of the equation. ‘Ihus, we obtain the equation 
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Since co= - lf2(cldY/dnl + . . . + end V/a x,,), the left-hand side 
of (4.4) is the total derivative rla (x, q)/dt on the basis of system 
(3.1) with 4 = c2(x, ~1, and the right-hand side is a quadratic form. 
With fixed q the system (3.1) is asymptotically stable. Consequently 1.10, 
p.61 I one can assert that there exists a unique solution of (4.4) which 
is a quadratic form of a(x, v). The conditions of the theorem are ful- 
filled on the closed interval q1 < q ,< q2, and the form coefficients of 
a depend continuously on q. Therefore, a constant t > 0 can be chosen 
such that the following estimate is fulfilled: 

(4.5)) 

Let us choose V(x, 7) as a Liapunov function, where q is the random 
magnitude of q(t). Because of (3.1) the derivative of the mathematical 
expectation dM( u)/dt consists of a sum of numbers which consider the 
change of the function Y over all arguments, including v(t) (Section 2): 

Using the values from (4.1) and (4.5) we obtain 

To assure stability and to satisfy the statements of Theorem 4.1, it 
is sufficient to require that the right-hand side of (4.6) be negative- 
definite, i.e. that the inequality 

(4.8) 

be fulfilled. 

Note that the constant E is determined from the solution of known 
problems with fixed q from the interval qI < q < q2, and consequently 
the value of Q can be calculated. 

Note 4. f. The condition p(a, p) 6 L/ j a - /?I corresponds to the re- 
quirement of a small probability of large jumps with varying t(t). i.e. 
the inequality NL < Q means that the probability of large variations of 
the system (3.1) is limited. 

For the stochastic system, this result corresponds to the well-known 
result of Chetaev on the freezing of variable coefficients in ordinary 
differential equations [ 1 1. 
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Note 4.2. If the conditions of Theorem (4.1) are fulfilled and allow- 
able control exists, then one can also construct an optimum control pro- 
gram which minimizes the integral mean-square evaluation of the quality 
in the stochastic system (3.1) (see, for instance [ 6, p.428 1 ). Thus, 
the following derivation is the result of the preceding. 

From the already-established existence conditions of the allowable 
control, it follows that if the vector system c(q), A(q) c(l)), *. . , 
A*‘(~)c(v) is linearly independent, and the evaluations in (4.1) are 
carried out, one can construct an optimum control program which optimizes 
the system (3.1) according to some integral criterion of the quality of 
the transition process. 

2. Let us study the case of the action of a disturbance y(x), when 
cli = const (case (p), Section 1). 

Suppose the conditions of Theorem 4.1 are fulfilled, and in the ab- 
sence of the disturbance the system is stabilized by means of a control 
program [(z, 9). We construct a function V(x, 7) just as in the proof of 
Theorem 4.1. 

lhen the expression for the derivative dM{ uj/dt, computed consider- 
ing the disturbing action y, differs from (4.6) by components of the 
form 

on the right-hand side (subsection 2, Section 2). Since V(n, q) is a 
positive-definite quadratic form, the relation 

S -< G (4.9) 

exists, which determines the region of non-correctible error x1 2+ . . . 
+ xn2 < A2. 

In order to stabilize the system by means of the control program 
&x, q), which in the case under study is (p, A)-allowable, it is suffi- 
cient to require that the limitations (2.5) on Theorem (2.1) be ful- 
filled. ‘Ibis determines the existence conditions of the control program. 

If pi depends linearly on { x1, . . . , x,) (case a, Section l), then on 
the left-hand side of (4.9) a quadratic form like 

iti? (V) xixi 
i, j 

is obtained. 
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The stabilization of such a system is possible with the aid of the 
allowable control, if the evaluations of (2.6) are fulfilled, where in 
choosing the number s > 0 in (2.6) (as well as the number H> 0 in 
(2.5)) a discontinuous character of the realization is assumed. 

5. System of the second order. Sufficient conditions for 
the formulation of allowable control. In a system where the tran- 
sition process is described by second-order equations, one can find 
sufficient existence conditions for the allowable control 5(x, n) by 
means of a geometrical interpretation in the phase plane 1 x1, x,1. These 
conditions differ somewhat from the requirements of the general theorem 
4.1 since the limit on the rate of change of the random variable q(t) 
(see Note 4.1) is not used here. 

Let us analyze this vector equation 

(5.1) 

Here k is the vector of the right-hand side of the fundamental linear 
system 

c = {Cl (q), 0 (11)) 

It will be shown that under certain conditions one can establish the 
allowable control 

g = ml (pm f [32x2) iru , ‘1. ::! = const) (La) 

We fix the variable 7 = nl. In the x1x2-plane (see figure) we con- 
struct the vector c1 = ~(7~). We denote by 1, = { - c12, Cl1 I a vector 

equal in magnitude and perpendicular 

to Cl’ 

Suppose the scalar product (k, Z1) 
along the line A,A, is equal to zero. 
The line A,A, separates the plane 
into regions of negative and positive 
values of the product (k, Z1). 

We assume that for all values of 
q1 < n < qZ the directions of the 
vector c(q) lie within the angle $ 
between c1 and ck. 

Suppose that there exists a 
general (for any T]) negative region (k, I) < 0 (such a case is shown in 
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the illustration) where the vector 1 for ql 6 q < qz is directed toward 
that region. 

Vie choose &, p2 in (5.2) such that the line $(x1, x2)= &x~+~~x~=O 

passes through the region (k, Z) < 0. Let us study now the positive- 
definite form with constant coefficients 

~7~ E a,,0fz12 + 2~t,,(~jz,Ir, -I- a,.,(Qs,” (5.3‘ 

The coefficients of the form oii (l) are chosen in such a fashion that the 

segments BB and C,C, (direction of the vector c,) are conjugate dia- 
meters of an ellipse 2D l = N,. Now we pass through the ends of the seg- 
ment BB an infinite number of ellipses wl = N, (corresponding to various 
values of TJ), each of which has as conjugate diameters the segments BB 

al-Id qpll (‘I1 c 7” 6 12)’ 

By changing the constant N, we obtain a new system of level lines 
4x, VI)) = const, where one can verify that also for the new ellipses the 
general intersection points remain on the line &x, + &x2 = 0. 

We have for a fixed 77 = ~~ 

or because of (5.1) 
dq 
It = (k + ct, gratlwl) (5.4) 

The vector grad TUT has the direction of the exterior normal. In the 
neighborhood of the points B we obtain 

% = (AZ, grad ~71) = n (k, ZJ < ir 

By means of a choice of the factor m in (5.2) with an increasing dis- 
tance from the line $(x1, x2) = 0, one can reach a negative value of the 
derivative dw,/dt, since the line #xl, x2) = 0 separates the plane xlxz 
into regions in which the scalar product (cl, grad wl) has opposite 
signs. 

Let us construct a quadratic form u(x, 91, considering q(t) to be a 
random quantity such that the coefficients of the form V(X, 9) for each 
value of 9 = ‘1. are equal to the coefficients .ij”’ in the expression 
for ID,, of the form (5.31. 
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We compute the derivative of mathematical expectation dM{ v 1 jdt on the 

basis of Equation (5.1) (see Formula (2.3)): 

diCJ (2;) 

dt 
= (k + c [,grad, zi)+ i; IU (x, p) - u (x, y)l &q (11, p) (5.6) 

$1 

Here grad,, v is computed for a fixed n. 

At the points 

locus of general 

for all 7j 1 < n 6 

approaches zero. 

of the line /3rx1 + &x2 = 0, which is the geometric 

intersection points of equal values of the form v(x, n) 

n2, the integral on the right-hand side of (5.6) 

At any other point of the plane x1x2 which does not belong to the 

neighborhood of that line, a negative value of dM( vi/dt can be assured 

by a choice of the multiplier m in (5.2). lbus; the sufficient condition 

for the ability to construct an allowable control in the case studied is 

the existence of a region in the phase plane {x1, x2] (in the illustra- 

tion this region is shaded) in which for nI < q(t) < qz the scalar pro- 

duct (k, 1) is negative and the vector 1 is pointed in the direction of 

this region. These conditions will be, of course, sufficient for the 

system (5.1) and for the purpose of constructing the optimum control 

program. 

We omit the discussion on the possibility of constructing the control 

program for the case of the action of the disturbance y(x), since this 

repeats completely the presentation of Section 2, subsection 2. 
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